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In this work we derive lower bounds for the Hausdorff and fractal dimensions of
the global attractor of the Sabra shell model of turbulence in different regimes of
parameters. We show that for a particular choice of the forcing term and for sufficiently
small viscosity term ν, the Sabra shell model has a global attractor of large Hausdorff
and fractal dimensions proportional to log ν−1 for all values of the governing parameter
ε, except for ε = 1. The obtained lower bounds are sharp, matching the upper bounds
for the dimension of the global attractor obtained in our previous work. Moreover, the
complexity of the dynamics of the shell model increases as the viscosity ν tends to zero,
and we describe a precise scenario of successive bifurcations for different parameters
regimes. In the “three-dimensional” regime of parameters this scenario changes when
the parameter ε becomes sufficiently close to 0 or to 1. We also show that in the “two-
dimensional” regime of parameters, for a certain non-zero forcing term, the long-term
dynamics of the model becomes trivial for every value of the viscosity.
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1. INTRODUCTION

Shell models of turbulence have attracted interest as useful phenomenological
models that retain certain features of the Navier–Stokes equations (NSE). In this
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work we continue our analytical study of the Sabra shell model of turbulence that
was introduced in Ref. 15. For other shell models see Refs. 4, 9, 10, 19. A recent
review of the subject emphasizing the applications of the shell models to the study
of the energy-cascade mechanism in turbulence can be found in Ref. 2.

The Sabra shell model of turbulence describes the evolution of complex
Fourier-like components of a scalar velocity field denoted by un . The associated
one-dimensional wave-numbers are denoted by kn , where the discrete index n is
referred to as the “shell index.” The equations of motion of the Sabra shell model
of turbulence have the following form

dun

dt
= i(akn+1un+2u∗

n+1 + bknun+1u∗
n−1 − ckn−1un−1un−2) − νk2

nun + fn, (1)

for n = 1, 2, 3, . . ., with the boundary conditions u−1 = u0 = 0. The wave-
numbers kn are given by

kn = k0λ
n, (2)

with λ > 1 being the shell spacing parameter, and k0 > 0. Although the equation
does not capture any geometry, we will consider L = k−1

0 as a fixed typical length
scale of the model. In an analogy with the Navier–Stokes equations, ν > 0 rep-
resents a kinematic viscosity and fn are the Fourier components of the forcing
term.

The three parameters of the model a, b and c are real. In order for the Sabra
shell model to be a system of the hydrodynamic type we require that, in the inviscid
(ν = 0) and unforced ( fn = 0, n = 1, 2, 3, . . .) case, the model has at least one
quadratic invariant. Requiring conservation of the energy

E =
∞∑

n=1

|un|2

leads to the following relation between the parameters of the model, which we will
refer to as an energy conservation condition

a + b + c = 0. (3)

Moreover, in the inviscid and unforced case, the model possesses another quadratic
invariant

W =
∞∑

n=1

(
a

c

)n

|un|2.

The Sabra shell model (1) has the following six parameters: ν, λ, k0, a, b,
and c. However, the “characteristic length-scale” k−1

0 does not appear on its own,
but rather in the following combinations: k0a, k0b, and k0c. Therefore, without
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loss of generality, we may assume that k0 = 1. Next, by rescaling the time

t → at,

and using the energy conservation assumption (3), we may set

a = 1, b = −ε, c = ε − 1.

Therefore, the Sabra shell model is in fact a three-parameter family of equations
with parameters ν > 0, ε, and λ > 1. In most of the numerical investigations of
the shell models, the parameter λ is set to λ = 2 (see Refs. 4, 15). The physically
relevant range of parameters is |a/c| > 1, or equivalently, 0 < ε < 2 (see Ref. 15
for details). For 0 < ε < 1, the quantity W is not sign-definite, and therefore it
is common to associate it with the helicity—in an analogy to the 3D turbulence.
The 2D parameters regime corresponds to 1 < ε < 2, for which the quantity W
becomes positive definite. In that case, the second conserved quadratic quantity
W is identified with the enstrophy—in analogy to the 2D turbulence.

Classical theories of turbulence assert that the turbulent flows governed by
the Navier–Stokes equations have a finite number of degrees of freedom (see, e.g.,
Refs. 9, 13). Arguing in the same vein, one can state that the Sabra shell model
with non-zero viscosity has finitely many degrees of freedom. One of the ways to
interpret such a physical statement mathematically is to assume that the number of
degrees of freedom of the model corresponds to the Hausdorff or fractal dimension
of its global attractor. Recall that the global attractor of the evolution equation on
the space H is the maximal compact invariant subset of H , which attracts all
bounded subsets of H . Thus the global attractor is unique. It can be shown that
the global attractor is a nonempty connected subset of H , and in particular, it is a
union of all bounded invariant attracting sets with different basins. For the precise
definition and properties of the global attractor see Refs. 1, 20.

In our previous study of the Sabra shell model of turbulence,(6) we proved the
existence of a global attractor for the model and provided explicit upper bounds of
its Hausdorff and fractal dimensions. Therefore, we proved that indeed the long-
term dynamics of the Sabra shell model with non-zero viscosity has effectively
finitely many degrees of freedom. The question remains, how many? The main
motivation behind this work is to provide a lower bound for the Hausdorff and
fractal dimensions of the global attractor. Namely, to show that for a particular
choice of the forcing term, and for all ε ∈ (0, 2), ε �= 1, the Hausdorff and fractal
dimensions of the global attractor are large, proportional to the upper bound
obtained previously in Ref. 6. However, we also give an example of the forcing
term such that for every ε ∈ (1, 2) and for any non-zero viscosity ν the long-term
dynamics of the Sabra shell model of turbulence is trivial.

In our work, we show that the Sabra shell model of turbulence possesses a
global attractor of large dimension for all values of the parameter ε ∈ (0, 2), ε �= 1.
In other words, we show that for every ε �= 1, the Hausdorff and fractal dimensions
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of the attractor are proportional to logλ ν−1 for small enough viscosity ν. Therefore,
we extend and give a rigorous analytical justification for the numerical results
observed in Refs. 21, 22 for ε = 1/2, and ε = 3/2, which corresponds respectively
to the purely “three” and “two-dimensional” values of parameters.

Moreover, in Sec. 4, we obtain an estimate of the dimension of the global
attractor in terms of the non-dimensional generalized Grashoff number G defined
as

G = |f|
ν2k3

1

, (4)

where |f| is an appropriate norm of the forcing term, which will be defined later.
More specifically, we show that for every ε ∈ (0, 2), ε �= 1, and for a small enough
viscosity ν, there exist positive constants c1, c2, c3, depending on λ, ε, and inde-
pendent of the viscosity ν and the forcing term f, such that

c1 logλ G + c2 ≤ dimH (A) ≤ dimF (A) ≤ 1

2
logλ G + c3. (5)

The right-hand side of the inequality was proved in Ref. 6, and is true for every
forcing term f. In this work, we show that this estimate is tight in the sense that
for particular choices of the forcing term f, the lower bound in (5) is achieved.
We would like to point out, that although our upper and lower bounds in (5) differ
only by a multiplicative constant, the wave-numbers kn (see (2)) of the Sabra shell
model are exponential with n. Therefore, if we calculate the analog of an energy
dissipation wave-number (see, e.g., Ref. 9) of the Sabra shell model, based on our
estimation of the dimension of the global attractor, the gap between the upper and
lower bounds becomes exponential.

When studying the lower-bounds for the dimension of the global attractors
of the 2D NSE and related equations, one uses the force and the corresponding
stationary solution concentrated on a single mode, the so-called Kolmogorov flow
(see, e.g., Refs. 1, 14, 17). In the case of the shell model, the contiguous character
of the interactions prevents the unstable manifold of a single mode solution from
becoming large. Therefore, we constructed another kind of forcing term—the
lacunary power-law forcing term—for which the lower bound in (5) is attained.
However, this is not related to the power-law forcing term, used, e.g., in Ref. 18.

In Sec. 4.1, we study the linear stability of the stationary solution of the
Sabra shell model, concentrated on a single mode N . We show that it becomes
unstable for every N and for small enough viscosity for all ε ∈ (0, 2), ε �= 1,
thus correcting a result of Ref. 12. Next, in Sec. 4.2 we construct the lacunary
power-law forcing term and consider a corresponding stationary solution u. We
demonstrate how the size of the unstable manifold of u grows both in the “two”
and “three-dimensional” parameters regime, through successive bifurcations, as
the viscosity ν tends to zero. In the “three-dimensional” regime ε ∈ (0, 1), when
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the parameter ε becomes close to 0 or 1, this scenario of successive bifurcations
changes. More precisely, for a fixed viscosity, when ε crosses the values 0.05 and
0.97, the dimension of the unstable manifold of u drops by a factor of 3. However,
the attractor in those regimes is still of the size proportional to logλ ν−1.

The transition to chaos in the GOY shell model of turbulence was studied
previously in Refs. 3, 11 by investigating numerically the stability properties of
the special stationary solution corresponding to the single mode forcing term,
which has a k−1/3 Kolmogorov’s power law in the inertial range. It was found
that this solution becomes unstable at ε = 0.3843, and at some value of ε a phase
transition occurs, when many stable directions become suddenly unstable. In this
work, we find evidence that the nature of the transition to chaos might strongly
depend on the type of the forcing term chosen. We expect that as ν tends to zero,
the transition to chaotic behavior occurs in all regimes of the parameter ε, and this
scenario changes for values of ε close to 0 and 1. This will be a subject of future
investigation.

Finally in Sec. 5, we show that in the “two-dimensional” parameter regime
the Sabra shell model has a trivial attractor reduced to a single equilibrium solution
for any value of viscosity ν, when the forcing term is applied only to the first shell.
This result is similar to the one for the 2-dimensional NSE due to Yudovich(24)

and independently by Marchioro(16) (see also Ref. 5).
First, we give a brief introduction to the mathematical formulations of

the Sabra shell model problem. More details on this subject could be found in
Refs. 6, 7.

2. PRELIMINARIES AND FUNCTIONAL SETTING

In this work, we will consider the real form of the Sabra model

dun

dt
= (akn+1un+2un+1 + bknun+1un−1 + ckn−1un−1un−2) − νk2

nun + fn,

for n = 1, 2, 3, . . ., and un , fn are real for all n. This formulation is obtained from
the original one by assuming that both the forcing term, fn , and the velocity, un ,
components in Eq. (1) are purely imaginary. Our goal in this work is to show that
the upper bounds of the Hausdorff and fractal dimensions of the global attractor of
the Sabra shell model obtained in Ref. 6 are optimal in the sense that they can be
achieved for some specific choice of the forcing term. Therefore, this formulation
of the model is not restrictive, as long as we are able to show in that case the size
of the global attractor matches the upper bound of Ref. 6.

Following the classical treatment of the NSE and Euler equations, and in
order to simplify the notation, we write system (1) in the following functional
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form

du

dt
+ νAu + B(u, u) = f (6a)

u(0) = uin, (6b)

in a Hilbert space H . The linear operator A as well as the bilinear operator B will
be defined below. In our case, the space H will be the sequences space �2 over the
field of complex numbers C. For every u, v ∈ H , the scalar product (·, ·) and the
corresponding norm | · | are defined as

(u, v) =
∞∑

n=1

unvn, |u| =
( ∞∑

n=1

|un|2
)1/2

.

The linear operator A : D(A) → H is a positive definite, diagonal operator
defined through its action on the sequence u = (u1, u2, . . .) by

Au = (
k2

1u1, k2
2u2, . . .

)
,

where the eigenvalues k2
j satisfy Eq. (2). Furthermore, we will need to define a

space

V := D(A1/2) =
{

u = (u1, u2, u3, . . .) :
∞∑

j=1

k2
j |u j |2 < ∞

}
.

The bilinear operator B(u, v) = (B1(u, v), B2(u, v), . . .) will be defined for-
mally in the following way. Let u = (u1, u2, . . .) and v = (v1, v2, . . .) be two
sequences, then

Bn(u, v) = −kn(λvn+2un+1 − εvn+1un−1 − λ−1un−1vn−2 + ελ−1vn−1un−2),

for n = 1, 2, . . ., where u0 = u−1 = v0 = v−1 = 0. It is easy to see that our defini-
tion of B(u, v) is consistent with (1). In Ref. 6 we showed that indeed our definition
of B(u, v) makes sense as an element of H , whenever u ∈ H and v ∈ V or u ∈ V
and v ∈ H .

For more details on the material of this section see Refs. 6, 7.

3. LOWER BOUNDS FOR THE DIMENSION OF THE GLOBAL

ATTRACTOR—THE “TWO-DIMENSIONAL” PARAMETER REGIME

The Hausdorff and fractal dimensions of the global attractor of the evolution
equation are bounded from below by the dimension of the unstable manifold of
every stationary solution (see, e.g., Refs. 1, 20). Therefore, in order to derive the
lower bound for the Hausdorff and fractal dimensions of the global attractor of
the Sabra shell model equation, we will construct a specific stationary solution of
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Eq. (6a) and count the number of linearly unstable directions of that equilibrium.
The same technique was first used in Ref. 17 (see also Refs. 1, 14) to obtain lower
bounds for the dimension of the Navier–Stokes global attractor in 2D. In this
section we will consider the “two-dimensional” parameters regime of the Sabra
shell model corresponding to

1 < ε < 2.

Consider the forcing term

f = ( f1, f2, f3, . . .),

where

fn =
{

kα
n , n = 0 mod 3

0, otherwise,
(7)

for

α = 1

3
logλ

ε − 1

ε
+ 5

3
. (8)

In addition, we will choose M > 0, large enough to be specified later in this
section, such that fn = 0, for all n > M .

The questions of global existence, uniqueness and regularity of solutions to
problem (6a), with general forcing term f ∈ H , are treated in Ref. 6. Specifically,
for every initial condition u(0) ∈ H there is a unique solution, u(t), of the Sabra
shell model of turbulence which exists globally in time. Moreover, u(t) ∈ V for
all t > 0. It was also established in Ref. 6 that for f ∈ H the Sabra shell model
of turbulence has a global attractor, which is a compact subspace of the space V .
In addition, in the case where the forcing term is supported on finite number of
modes, such as in our case, the solution possess an exponentially decaying (with
respect to kn) dissipation range (see Ref. 6 for details).

The corresponding stationary solution of the Sabra shell model Eq. (1) or
(6a) is

u = (u1, u2, u3, . . .), (9)

where

un =

⎧
⎪⎨

⎪⎩

fn

νk2
n

, n = 0 mod 3

0, otherwise .

(10)

Consider v = (v1, v2, v3, . . .) ∈ H – an arbitrary perturbation of the station-
ary solution u. Plugging u + v into the equation of motion (6a), we find that the



1180 Constantin, Levant and Titi

perturbation v satisfies the equation

dv

dt
+ νAv + B(u, v) + B(v, u) + B(v, v) = 0.

To study the linear stability of the equilibrium solution u, we will consider the
properties of the linearized equation

dv

dt
+ Luv = 0,

where the linear operator is defined as

Luv = νAv + B(u, v) + B(v, u). (11)

We are looking for the solution of the eigenvalue problem

Luv = −σv, (12)

for some σ ∈ C. Our goal is to count the number of the solution of Eq. (12) with
Re(σ ) > 0. Equation (12) can be written componentwise as

νk2
nvn − kn(λun+2vn+1 − εun+1vn−1 + (ε − 1)λ−1un−1vn−2

+ λvn+2un+1 − εvn+1un−1 + (ε − 1)λ−1vn−1un−2) = −σvn, (13)

where un is specified in (10). Note, that un = 0 for all n �= 0 mod 3, therefore the
last equation could be written in the following detailed form

• For n = 0 mod 3,

νk2
nvn = −σvn. (14)

• For n = 1 mod 3,

νk2
nvn − kn((λun+2 − εun−1)vn+1 + (ε − 1)λ−1un−1vn−2) = −σvn. (15)

• For n = 2 mod 3,

νk2
nvn − kn(λun+1vn+2 + ((ε − 1)λ−1un−2 − εun+1)vn−1) = −σvn. (16)

Note that from relation (14) it follows that σ = −νk2
n0

corresponds to the eigen-
vectors

v = (0, . . . , 0, vn0 , 0, . . .), (17)

with vn0 �= 0 for some n0 = 0 mod 3. However, we are only interested in the
solutions of Eq. (12) with Re(σ ) > 0. Based on the above, the only solution of
relation (13) for which Re(σ ) > 0 should satisfy vn = 0, for all n = 0 mod 3.
Equations (14) are not coupled with the rest of the recursive Eqs. (15) and (16).
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Therefore, in looking for non-trivial solutions v of Eq. (12) we can look only for
the coupled recursive linear Eqs. (15) and (16), and set

vn = 0, ∀n = 0 mod 3, (18)

as the solution of (14).
In what follows we will find sufficient conditions for the existence of non-

trivial solutions for (12) with Re(σ ) > 0. Let

bn,1 = kn
λun+2 − εun−1

νk2
n + σ

,

cn,1 = (ε − 1)kn−1un−1

νk2
n + σ

,

for all n = 1 mod 3, and

bn,2 = kn+1un+1

νk2
n + σ

,

cn,2 = kn
(ε − 1)λ−1un−2 − εun+1

νk2
n + σ

,

for all n = 2 mod 3. Then we can rewrite Eqs. (15) and (16) as a recursive relation
for vn

vn − bn,1vn+1 − cn,1vn−2 = 0, for all n = 1 mod 3,

vn − bn,2vn+2 − cn,2vn−1 = 0, for all n = 2 mod 3.

Due to our choice (8) for the value of α, one can realize from (10) that cn,2 = 0,
for all n = 2 mod 3. Therefore, we can further simplify the last equations, which
become

vn − bn,1vn+1 − cn,1vn−2 = 0, n = 1 mod 3,
(19)

vn − bn,2vn+2 = 0, n = 2 mod 3.

The following result gives a sufficient condition for the last recursion to have at
least one non-trivial solution.

Lemma 1. Let M be a large positive integer. Let us fix N < M, and assume that
N = 1 mod 3. Then the recursive Eq. (19) has a non-trivial solution of the form
vn = 0, for all n > N, and vn �= 0, for some n ≤ N, if and only if

bN−2,2 cN ,1 = 1. (20)
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Proof: The proof of the Lemma 1 is simple once we observe that the recursive
relation (19) for solutions of the form vn = 0, for n > N , becomes

v1 − b1,1v2 = 0,

v2 − b2,2v4 = 0,

v4 − b4,1v5 − c4,1v2 = 0,

v5 − b5,2v7 = 0,

...

vN−2 − bN−2,2vN = 0,

vN − cN ,1vN−2 = 0.

The last two equations have a one-parameter family of nontrivial solutions if and
only if the condition (20) is satisfied. �

Finally, we are ready to prove the main result of this section.

Theorem 1. The Hausdorff and fractal dimensions of the global attractor of the
Eq. (6a) in the parameter regime 1 < ε < 2, with the forcing term f specified in
(7), satisfy

dimF A ≥ dimH A ≥ 2

4 − logλ
ε−1
ε

logλ ν−1 + 1

8 − 2 logλ
ε−1
ε

logλ(ε − 1).

(21)

Proof: Fix M to be large enough, and let N < M be such that N = 1 mod 3.
Suppose, that for such N the condition (20) is satisfied for certain σ = σ (N ),
depending on N , for which Re(σ ) > 0. Then, for such σ , there exists a solution of
Eq. (19), and in particular, there exists a solution of the eigenvalue problem (12)
with Re(σ ) > 0. Moreover, it is not hard to see that if N1 �= N2, then the solutions
of the eigenvalue problem (12) corresponding to σ (N1) and σ (N2) are different.

Therefore, for a given M , in order to count the number of unstable directions
of the stationary solution (10), we need to count the number of Ns, such that (i)
N < M ; (ii) N = 1 mod 3; (iii) N satisfies (20) with the eigenvalue σ , for which
Re(σ ) > 0.

Let us fix N > 0, satisfying N = 1 mod 3. The condition (20) becomes

kN+1uN+1

νk2
N + σ

· (ε − 1)kN+1uN+1

νk2
N+2 + σ

= 1.

We get the quadratic equation in σ

σ 2 + (
νk2

N + νk2
N+2

)
σ + ν2k2

N k2
N+2 − (ε − 1)k2

N+1u2
N+1 = 0.
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This equation has a real positive solution, provided

ν2k2
N k2

N+2 − (ε − 1)k2
N+1u2

N+1 < 0. (22)

Substituting (10) we obtain the equivalent condition to (22)

(ε − 1)ν−2k2(α−2)
N+1 > ν2k2

N+1.

Rearranging terms, the following condition guarantees the existence of a positive
real eigenvalue for (12)

(ε − 1)1/2ν−2 > λ(3−α)(N+1).

Now, we substitute the value of α from (8) to obtain

(ε − 1)1/2ν−2 > λ
4−logλ

ε−1
ε

3 (N+1).

Finally, we get the estimate

N + 1 <
3

4 − logλ
ε−1
ε

logλ((ε − 1)1/2ν−2)

= 6

4 − logλ
ε−1
ε

logλ ν−1 + 3

8 − 2 logλ
ε−1
ε

logλ(ε − 1). (23)

Therefore, we showed that if the M that we have chosen at the beginning of
the proof, is larger than the right-hand side relation (23), then for such a choice of
the forcing term, the number of unstable directions of the stationary solution (10)
is bounded from below by

2

4 − logλ
ε−1
ε

logλ ν−1 + 1

8 − 2 logλ
ε−1
ε

logλ(ε − 1),

and the statement of the theorem follows. �

In Ref. 6 we showed that the dimension of the global attractor of the Sabra
shell model of turbulence is proportional to the logλ ν−1 for small enough viscosity
ν. Therefore, our result proves that this bound is tight.

4. LOWER BOUNDS FOR THE DIMENSION OF THE

GLOBAL ATTRACTOR—THE “THREE-DIMENSIONAL”

PARAMETERS REGIME

The result obtained in the previous section did not give an answer for the case

0 < ε < 1, (24)

which is also known as the “three-dimensional” range of parameters. Therefore,
we will need to apply a different strategy. First, we will consider the linear stability
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of a stationary solution, corresponding to the force acting on a single mode number
N , for some N > 0. We will show that for every choice of N , and for every value
of the parameter ε ∈ (0, 2], ε �= 1, such a stationary solution becomes linearly
unstable for sufficiently small viscosity ν. The stability of a single-mode stationary
solution was numerically studied previously in Ref. 12, where it was found that
such a solution becomes stable around ε = 1. Our rigorous proof contradicts this
numerical observation.

Next, we will construct s special type of equilibrium solution, for which
we will be able to count the number of unstable directions. The draw-back of this
method is that we are not able to obtain the exact dependence of the bounds on ε and
λ, the parameters of the problem, as we succeeded to do in the “two-dimensional”
parameters case.

4.1. On the Linear Stability of a “Single-Mode” Flow

Let us fix N1 and consider the forcing term acting on the single mode N of
the form

fN = (
0, . . . , 0, νk−1

N , 0, . . .
)
, (25)

where all the components of fN , except the N -th, are zero. Consider one particular
choice of an equilibrium solution corresponding to the above forcing term

uN = (
0, . . . , 0, k−3

N , 0, . . .
)
, (26)

which is the analog of the Kolmogorov flow for the Navier–Stokes equations.
Linearizing Eq. (1) around the equilibrium solution uN and writing Eq. (12)

in the component form we get the following set of equations. For every j ∈ N,
satisfying 2 < | j − N |, or for j = N , we have

νk2
j v j = −σv j , (27)

together with the four equations, coming from the nonlinear interaction with uN

νk2
N−2vN−2 − kN−1k−3

N vN−1 = −σvN−2,

νk2
N−1vN−1 − kN k−3

N vN+1 + εkN−1k−3
N vN−2 = −σvN−1

νk2
N+1vN+1 + (1 − ε)kN k−3

N vN−1 + εkN+1k−3
N vN+2 = −σvN+1,

νk2
N+2vN+2 + (1 − ε)kN+1k−3

N vN+1 = −σvN+2.

Therefore, the eigenvalues of the linear operator LuN (see (11)) are −σ =
νk2

j , for 2 < | j − N |, or for j = N , corresponding to the eigenvectors v =
(0, 0, . . . , 1, 0, . . .), with 1 at the j-th place. Clearly, those eigenvalues are posi-
tive, corresponding to Re(σ ) < 0, therefore they do not contribute to the number
of linearly unstable directions of the equilibria uN .
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Other eigenvalues of the linear operator LuN are the eigenvalues of the fol-
lowing matrix

JN =

⎛

⎜⎜⎜⎜⎜⎝

νk2
N−2 −k−2

N λ−1 0 0

εk−2
N λ−1 νk2

N−1 −k−2
N 0

0 (1 − ε)k−2
N νk2

N+1 εk−2
N λ

0 0 (1 − ε)k−2
N λ νk2

N+2

⎞

⎟⎟⎟⎟⎟⎠
, (28)

which will correspond to the eigenvectors v = (v1, v2, v3, . . .) of the linear oper-
ator LuN with the only non-zero components being v j , 0 < | j − N | < 2.

Our goal is to find the condition on the parameters N , ε, and ν, such that the
matrix JN has eigenvalues with a negative real part, which will correspond to σ

satisfying Re(σ ) > 0. Let us rewrite expression (28) in the following way

JN = k−2
N ·

⎛

⎜⎜⎜⎜⎝

λ−4β −λ−1 0 0

ελ−1 λ−2β −1 0

0 (1 − ε) λ2β ελ

0 0 (1 − ε)λ λ4β

⎞

⎟⎟⎟⎟⎠
, (29)

where we denoted for simplicity

β = νk4
N .

First, by substituting ε = 1, we find that for this value of ε the eigenvalues of the
matrix JN always has a positive real part. Therefore, we conclude that in the case
ε = 1 the solution uN is stable for every N and any ν.

For other values of the parameters, we substitute λ = 2, and write the char-
acteristic polynomial of the matrix JN

x4 − 325

16
βx3 +

(
4ε2 − 19

4
ε + 1 + 4497

64
β2

)
x2

−
(

325

16
β2 + 5

4
ε2 + 257

16
− 197

16
ε

)
βx

+ (ε3 − ε2) +
(

1 + 239

16
ε + 1

16
ε2 + β2

)
β2 = 0. (30)

Next, by fixing an ε, we find the largest β when the real part of the roots of the
polynomial (30) changes its sign. The result of this calculation is shown in Fig. 1.

For every ε in the “three-dimensional” subrange of parameters 0.05 < ε <

0.97, there are two bifurcation points. First, there exists a value of β for which
one of the real eigenvalues of JN crosses 0 and becomes negative. Decreasing the
parameter β further, we observe another bifurcation for which the real part of a
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(a) “Three-dimensional” parameter regime.
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(b) “Two-dimensional” parameter regime.

Fig. 1. The bifurcation diagram β vs. ε. The dashed line indicates the appearance of one real negative
eigenvalue of the matrix JN , which happens only in the regime 0 < ε < 1 (a). The solid line shows
the point at which the real part of two conjugate complex eigenvalues of JN become negative. This
bifurcation disappears in the “three-dimensional” parameter regime (a) at 0 ≤ ε ≤ 0.05 and 0.97 ≤
ε ≤ 1. Observe that for positive viscosity ν the solution uN is linearly stable for every N at ε = 1,
which can be shown rigorously.

pair of complex conjugate eigenvalues becomes negative. Therefore, for 0 < ε < 1
there exists a function m(ε), such that the matrix JN has 3 negative eigenvalues
for

0 < β = νk4
N ≤ m(ε), (31)

or in other words, for N satisfying

4N ≤ logλ ν−1 + logλ m(ε). (32)

Note, that m(ε) > 0 at ε ∈ (0.05, 0.97), and m(ε) = 0 otherwise.
For the range of parameters 0 < ε ≤ 0.05 and 0.97 ≤ ε < 1 we observe only

one bifurcation point at which one of the real eigenvalues becomes negative.
Finally, for the “two-dimensional” range of parameters 1 < ε < 2 the sce-

nario is a little different, as we observe only one bifurcation point for which the
real part of a pair of complex conjugate eigenvalues becomes negative. Namely,
for 1 < ε < 2 there exists a function d(ε), such that the matrix JN has two negative
eigenvalues for

0 < β = νk4
N ≤ d(ε), (33)

or equivalently, for N satisfying

4N ≤ logλ ν−1 + logλ e(ε). (34)

In this case, we also have, e(ε) > 0 for all ε ∈ (1, 2], and d(1) = 0.
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4.2. Calculating the Lower Bound of the Dimension of the Attractor

When studying the lower-bounds for the dimension of the global attractors
of the 2D NSE and related equations one uses the force and the corresponding
stationary solution concentrated on a single mode, the so-called Kolmogorov flow
(see, e.g., Refs. 1, 14, 17). In the case of the shell model, the contiguous character
of the interactions prevents the unstable manifold of a single mode solution from
becoming large. In the previous section we show that the Sabra shell model
has at most three unstable directions for the “single-mode” forcing term. In this
section we construct a special kind of a lacunary power-law forcing term, and a
corresponding stationary solution, with a large unstable manifold. Let us introduce

g =
∞∑

j=1

f5 j , |g| = ν
1

λ5
√

1 − λ−10
, (35)

where f5 j is defined in (25). Then the stationary solution corresponding to that
forcing term is

ug =
∞∑

j=1

u5 j , (36)

where u5 j is defined in (26). Using the results of the previous section on the
stability of the single-mode stationary solution we conclude that for 0 < ε < 1,
the number of the unstable directions of the solution ug equals to 3N/5, where N
satisfies the relation (32). On the other hand, the number of the unstable directions
of the solution ug for 1 < ε < 2 equals to 2N/5, where N satisfies relation (34).

Recall the definition of the generalized Grashoff number (4), which in our
case satisfies

G = |g|
ν2λ3

= 1

νλ8
√

1 − λ−10
.

Therefore, we can rewrite the bounds (32) and (32) in terms of the generalized
Grashoff number to obtain

4N = logλ ν−1 + logλ f (ε) ≤ logλ G + logλ f (ε), (37)

where f (ε) denotes m(ε) or d(ε). Therefore, we proved the following.

Theorem 2. The Hausdorff and fractal dimensions of the global attractor A of
the Sabra shell model of turbulence with ν > 0 and the forcing term defined in
(35) satisfy

dimF (A) ≥ dimH (A) ≥ K logλ G + logλ f (ε), (38)
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for the positive constant K depending on ε which satisfies

K (ε) =

⎧
⎪⎪⎨

⎪⎪⎩

3
20 , for 0.05 < ε < 0.97
1
10 , for 1 < ε ≤ 2
1
20 , for 0 < ε ≤ 0.05, and 0.97 ≤ ε < 1,

(39)

and for some positive real function f (ε), which is 0 only for ε = 1.

The lower bounds for the global attractor, given by the last theorem do not
match exactly the upper bounds, that were obtained previously in Ref. 6, exactly,
namely

dimH (A) ≤ dimF (A) ≤ 1

2
logλ G − C(ε), (40)

where the function C(ε) stays positive and bounded for every ε ∈ (0, 2). Moreover,
the constant K in front of the logλ G term, although it can be slightly improved,
cannot be brought much closer to 1

2 to match the upper bound of (40).

5. EXISTENCE OF A TRIVIAL GLOBAL ATTRACTOR

FOR ANY VALUE OF ν

It is well known that the attractor for the 2-dimensional space-periodic
Navier–Stokes equation with a particular form of the forcing term can consist
of only one function. This well-known example is due to Yudovich(24) and inde-
pendently by Marchioro(16) (for the proof see also Ref. 8). The same is true for
the Sabra shell model for 1 < ε < 2, therefore, we need to stress that the bounds
that we obtained for the dimension of the global attractor are valid only for the
particular type of forcing term that we used in our calculations.

We mentioned in the introduction that, for the 2-dimensional parameters
regime, the inviscid Sabra shell model without forcing term conserves the follow-
ing quantity

|Aγ u|2 =
∞∑

n=1

k4γ
n |un|2,

for 4γ = − logλ(ε − 1). This is because we have, in this case, the following
identity

Re(B(u, u), A2γ u) = 0.

For m > 0 let us denote by Pm the projection onto the first m coordinates of the
sequence u, and by Qm = I − Pm .
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Theorem 3. Suppose that the forcing term f acts only on the N-th shell for some
N ≥ 1. Let u(t) be the solution of Eq. (6a) in the “two-dimensional” regime of
parameters 1 < ε < 2, and let γ = − 1

4 logλ(ε − 1). Then we have

lim sup
t→∞

|Qmu(t)|2 ≤ C
1

k4γ

m+1

lim inf
t→∞ |Pmu(t)|2, (41)

for C = k4γ

N −k4γ

1
1−λ−4γ and m ≥ N.

Proof: Taking the scalar product of Eq. (6a) with u and with A2γ u we get two
equations

1

2

d

dt
|u|2 + ν(Au, u) = Re( fN u∗

N ),

and

1

2

d

dt
|Aγ u|2 + ν(Au, A2γ u) = Re

(
k4γ

N fN u∗
N

)
.

Multiplying the energy equation by k4γ

N and subtracting it from the last equation
we get

1

2

d

dt

(|Aγ u|2 − k4γ

N |u|2) + ν
(|Aγ+1/2u|2 − k4γ

N ‖u‖2
) = 0. (42)

On the other hand,

|Aγ+1/2u|2 − k4γ

N ‖u‖2 =
∞∑

n=1

k2
n

(
k4γ

n − k4γ

N

)|un|2

≥ k2
N

∞∑

n=1

(
k4γ

n − k4γ

N

)|un|2 = k2
N

(|Aγ u|2 − k4γ

N |u|2).

Plugging the last expression into (42) yields

d

dt

(|Aγ u|2 − k4γ

N |u|2) ≤ −2νk2
N

(|Aγ u|2 − k4γ

N |u|2),

and therefore,

lim sup
t→∞

(|Aγ u(t)|2 − k4γ

N |u(t)|2) = 0. (43)

Finally,

|Qmu|2 =
∞∑

i=m+1

|ui |2 =
∞∑

i=m+1

k4γ

i − k4γ

N

k4γ

i − k4γ

N

|ui |2
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≤ 1

k4γ

m+1 − k4γ

N

(|QmAγ u|2 − k4γ

N |Qmu|2)

= 1

k4γ

m+1 − k4γ

N

((|Aγ u|2 − k4γ

N |u|2) − (|PmAγ u|2 − k4γ

N |Pmu|2))

≤ 1

k4γ

m+1 − k4γ

N

((|Aγ u|2 − k4γ

N |u|2) + (
k4γ

N − k4γ

1

)|Pmu|2),

and the result follows from (43). �

Corollary 1. The global attractor of the Sabra shell model of turbulence in the
“two-dimensional” regime of parameters 1 < ε < 2 with the force applied only
to the first shell

f1 = ( f, 0, 0, . . .), (44)

is reduced to a single stationary solution

u1 =
(

f

νk2
1

, 0, 0, . . .

)
.

Proof: Let u = (u1, u2, . . .) be a solution of the Sabra shell model with the
forcing term f defined by (44). Then it immediately follows from Theorem 3 that

lim sup
t→∞

|Q1u|2 = 0,

which means that lim supt→∞ |un| = 0, for every n ≥ 2.
Define v = (v1, v2, . . .) as v = u − u1, which satisfies the equation

dv

dt
+ νAv + B(u, u) = 0,

where we used the fact that B(u1, u1) = 0. Taking the inner product of the equation
with the vector P1v = (v1, 0, 0, . . .) we get that |v1(t)|2 satisfies

1

2

d

dt
|v1(t)|2 + νk2

1 |v1(t)|2 + v1(t)u2(t)u3(t) = 0.

Using the fact that u2(t), u3(t) tend to 0 as t → ∞ we conclude that |v1(t)|2 → 0
as t → ∞. Therefore,

lim sup
t→∞

|v|2 = lim sup
t→∞

|u − u1|2 = 0.

finishing the proof. �
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6. CONCLUSION

In this work we obtained lower bounds for the dimension of the global
attractor of the Sabra shell model of turbulence for specific choices of the forcing
term. Our main result states that for these specific choices of the forcing term the
Sabra shell model has a large attractor for all values of the governing parameter
ε ∈ (0, 2) \ {1}. We also showed the scenario of the transition to chaos in the
model, which is slightly different for the two- and three-dimensional parameter
regime. In addition, in the three-dimensional parameters regime, ε ∈ (0, 1), we
found that when the parameter ε becomes sufficiently close to 0 or to 1, where the
chaotic behavior in the vicinity of the stationary solution changes dramatically.

Finally, we show that in the “two-dimensional” parameters regime the Sabra
shell model has a trivial attractor reduced to a single equilibrium solution for
any value of viscosity ν, when the forcing term is applied only to the first shell.
This result is true also for the two-dimensional NSE due to Yudovich(24) and
independently by Marchioro(16) (see also Ref. 8).
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